If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-36=0.
a = 4; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·4·(-36)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*4}=\frac{-24}{8} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*4}=\frac{24}{8} =3 $
| 2x+3(x-2)=-21 | | -x+8x=73 | | X214=5x | | 4v=15+v | | 1/3(2m+4)=1/9(2m+-16) | | 4(x-1)=x+5x(x+10) | | 6^(3x)=4 | | (-1/2)(-2)(q-5)=(-1/2)10 | | 0.5x^2-5x-4.5=0 | | 4^{3x-2}=8 | | x+.065x=141250 | | 25x2+50x+26=0 | | 2/5-1/3x=3/4 | | 9x2-12x+8=0 | | 2x+65=165 | | 3f-4=29 | | 0.5(7d+4)=7+5d | | -15d+4=34 | | 3q+1=22 | | 3x-8=x+7+2(x+1) | | −3d−4=9d+7 | | 100x-60x^2=40 | | 1.3=2.72^x | | 5(4)^(3x-2)=40 | | 6(x+1)=3x+18 | | 16+29=-5(7x-9) | | 2.4d=10.56 | | 6h+3.50=6.70h | | 4-5(2x-1)=-3(4x-5) | | 3+17=-2(6x-10) | | 5(2x+5)=-30+15 | | 117=-39r |